204
Views
5
CrossRef citations to date
0
Altmetric
Forest Health

Spatial and temporal distribution of Bursaphelenchus xylophilus inoculated in grafts of a resistant clone of Pinus thunbergii

ORCID Icon, , , &
Pages 93-99 | Received 26 Jul 2018, Accepted 30 Jan 2019, Published online: 16 Feb 2019
 

ABSTRACT

Preventive plantation of resistant Pinus thunbergii seedlings is anticipated in non-epidemic areas of pine wilt disease (PWD) in Japan. The scions of resistant clones, which are required to establish a seed orchard for the production of resistant seedlings, might harbor Bursaphelenchus xylophilus (a pathogen of PWD), as they are grown in epidemic areas and artificially inoculated with B. xylophilus to verify their resistance. In this study, we analyzed within-tree distribution of B. xylophilus in inoculated grafts of a resistant P. thunbergii clone, Yuza-155, at two different times, 7 and 19 months after inoculation. Experimental evidence using both direct extraction of nematodes and a DNA-based detection technique demonstrated that the migration and propagation of inoculated nematodes were restricted mostly within the scion stems and rootstocks. In branch samples, nematodes were detected less frequently by the DNA-based method and no live nematodes were extracted at 7 months after inoculation, whereas at 19 months after inoculation, neither of the methods detected any nematodes. Thus, the probability that the current-year shoots of this resistant clone, Yuza-155, which initiated plant growth in the season following inoculation, are infected with B. xylophilus is quite low. Therefore, they may serve as pathogen-free scions for propagation of ramets of resistant P. thunbergii clones and construction of seed orchards in PWD non-epidemic locations.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the Science and Technology Research Promotion Program for Agriculture, Forestry, Fisheries and Food Industry from the Ministry of Agriculture, Forestry and Fisheries of Japan under Grant number 27020C.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 159.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.