88
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Growth performance and range shift of the subalpine fir (Abies fargesii) in the Qinling Mountains, China

, , &
Pages 162-171 | Published online: 16 Apr 2010
 

Abstract

Trees in the subalpine environment, a particularly vulnerable area being the first to reflect climate changes, are most likely to show strong effects of climate variability. The aim of this study was to identify growth responses of subalpine fir (Abies fargesii) to climate variability, and investigate range shifts along an altitudinal gradient in the subalpine region of the Qinling Mountains, China. Standard correlation functional analysis showed different growth responses of fir trees to climatic variables between north and south aspects. In the north aspect, radial growth was significantly positively correlated with temperatures in early spring (February–April) and summer (July) of the current year, while radial growth was significantly positively correlated with temperatures in November and December of the previous year and early spring (February–April) of the current year in the south aspect. Analysis of age structure distribution displayed a decrease in number of mature fir trees and an increase in number of saplings along the altitudinal gradient on both aspects. Fir saplings/seedlings only occur in the treeline environment, and this fir population was significantly younger than that at lower elevations. Thus, fir trees show different radial growth patterns in response to climatic variability between north and south aspects, and age-class distributions along the altitudinal gradient imply an upward shift in range in the subalpine region during the past century in the Qinling Mountains of China.

Acknowledgements

This research was supported by the National Natural Science Foundation of China (30900199) and the Funds of the Chinese Academy of Sciences for Key Topics in Innovation Engineering (KSCX2-YW-Z-1023). We thank Gaodi Dang and Xinping Ye for assistance in fieldwork, and Xu Pang and Xiuxia Chen for assistance in the tree core processing. We also thank the Foping National Nature Reserve for logistical support during the fieldwork.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 53.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 235.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.