234
Views
1
CrossRef citations to date
0
Altmetric
Articles

Optimal portfolio execution under time-varying liquidity constraints

&
Pages 387-416 | Received 19 Mar 2017, Accepted 07 Nov 2017, Published online: 04 Dec 2017
 

ABSTRACT

In this article, we take an algorithmic approach to solve the problem of optimal execution under time-varying constraints on the depth of a limit order book (LOB). Our algorithms are within the resilience model proposed by Obizhaeva and Wang (2013) with a more realistic assumption on the order book depth; the amount of liquidity provided by an LOB market is finite at all times. For the simplest case where the order book depth stays at a fixed level for the entire trading horizon, we reduce the optimal execution problem into a one-dimensional root-finding problem which can be readily solved by standard numerical algorithms. When the depth of the order book is monotone in time, we apply the Karush-Kuhn-Tucker conditions to narrow down the set of candidate strategies. Then, we use a dichotomy-based search algorithm to pin down the optimal one. For the general case, we start from the optimal strategy subject to no liquidity constraints and iterate over execution strategy by sequentially adding more constraints to the problem in a specific fashion until primal feasibility is achieved. Numerical experiments indicate that our algorithms give comparable results to those of current existing convex optimization toolbox CVXOPT with significantly lower time complexity.

Additional information

Funding

A. Fahim is partially supported by the NSF [DMS-1209519].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 53.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 616.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.