Publication Cover
Redox Report
Communications in Free Radical Research
Volume 3, 1997 - Issue 5-6
124
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Increased formation of interstitial hydroxyl radical following myocardial ischemia: possible relationship to endogenous opioid peptides

, , &
Pages 295-301 | Received 23 Jul 1997, Accepted 02 Sep 1997, Published online: 13 Jul 2016
 

Summary

The effects of myocardial ischemia and reperfusion on interstitial hydroxyl radical production, in the left ventricular myocardium of anesthetized cats, were investigated. Ringer's solution containing salicylic acid was perfused through an implanted microdialysis probe. Hydroxyl radical production was evaluated as the 2,3 and 2,5 dihydroxybenzoic acid (DHBA) concentrations in the microdialysates by an on-line high performance liquid chromatography system. Myocardial ischemia for 60 min, induced by ligation of the left anterior descending coronary artery, significantly increased both 2,3 and 2,5 DHBA levels when compared with the sham-operated cats. Naloxone (1 mg/kg, bolus, intravenous), an endogenous opioid peptide receptor antagonist, significantly suppressed the ischemia-induced production of hydroxyl radicals. Myocardial ischemia also induced cardiac arrhythmia. Naloxone reduced the severity of ischemia-induced arrhythmia, as observed by a significantly lower arrhythmia score (1.4 ± 0.2 vs. 4.6 ± 0.4 for control), and by diminished incidence of ventricular tachycardia (0/7 vs. 8/8 for control) and ventricular fibrillation (0/7 vs. 3/8 for control). Furthermore, perfusion of dynorphin (0.25 μg, 2.5 μg and 25 μg), an endogenous opioid peptide receptor agonist, increased hydroxyl radical production. Our results suggest that, in anesthetized cats, myocardial ischemia can induce production of interstitial hydroxyl radical in left ventricular myocardium, and this production may involve the actions of released endogenous opioid peptides on their receptors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.