63
Views
3
CrossRef citations to date
0
Altmetric
Papers

Differential tropism of human herpesvirus 6 (HHV-6) variants and induction of latency by HHV-6A in oligodendrocytes

, , , , &
Pages 384-394 | Received 20 Feb 2005, Accepted 16 Apr 2005, Published online: 10 Jul 2009
 

Abstract

Human herpesvirus 6 (HHV-6) is a ubiquitous β -herpesvirus associated with a number of clinical disorders. Two closely but biologically distinct variants have been described. HHV-6 variant B causes the common childhood disease exhanthem subitum, and although the pathologic characteristics for HHV-6 variant A are less well defined, HHV-6A has been suggested to be more neurotropic. We studied the effect of both HHV-6 variants in an oligodendrocyte cell line (MO3.13). Infection of M03.13 was monitored by cytopathic effect (CPE), quantitative TaqMan PCR for viral DNA in cells and supernatant, reverse transcriptase-polymerase chain reaction (RT-PCR) to detect viral RNA, and indirect immunofluorescence (IFA) to detect viral protein expression. HHV-6A infection induced significantly more CPE than infection with HHV-6B. HHV-6B induced an abortive infection associated with a decrease of the initial viral DNA load over time, early RNA expression, and no expression of viral antigen. In contrast, infection with HHV-6A DNA persisted in cells for at least 62 days. During the acute phase of infection with HHV-6A, intracellular and extracellular viral load increased and cells expressed the viral protein IE-2 and gp116/54/64. No HHV-6A RNA or protein was expressed after 30 days post infection, suggesting that HHV-6A formed a latent infection. These studies provide in vitro support to the hypothesis that HHV-6 can actively infect oligodendrocytes. Our results suggest that HHV-6A and HHV-6B have different tropism in MO3.13 cells and that an initially active HHV-6A infection can develop latency. Differences between HHV-6A and -6B infection in different neural cell types may be associated with different neurological diseases.

Jenny Ahlqvist was supported by the Karolinska Institutet–National Institutes of Health Graduate Partnership Program. The authors wish to thank Elena Martinelli and Matthew Mandel for technical assistance and helpful discussion.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.