9
Views
0
CrossRef citations to date
0
Altmetric
Paper

Simian immunodeficiency virus envelope compartmentalizes in brain regions independent of neuropathology

, , , , , & show all
Pages 73-89 | Received 27 Oct 2005, Accepted 07 Feb 2006, Published online: 10 Jul 2009
 

Abstract

Simian immunodeficiency virus (SIV) and human immunodeficiency virus (HIV) gp160s obtained from the brain are often genetically distinct from those isolated from other organs, suggesting the presence of brain-specific selective pressures or founder effects that result in the compartmentalization of viral quasispecies. Whereas HIV has also been found to compartmentalize within different regions of the brain, the extent of brain-regional compartmentalization of SIV in rhesus macaques has not been characterized. Furthermore, much is still unknown about whether phenotypic differences exist in envelopes from different brain regions. To address these questions, env DNA sequences were amplified from four SIVmac239-infected macaques and subjected to phylogenetic and phenetic analysis. The authors demonstrated that sequences from different areas of the brain form distinct clades, and that the long-term progressing macaques demonstrated a greater degree of regional compartmentalization compared to the rapidly progressing macaques. In addition, regional compartmentalization occurred regardless of the presence of giant-cell encephalitis. Nucleotide substitution rates at synonymous and nonsynonymous sites (ds:dn rates) indicated that positive selection varied among envelopes from different brain regions. In one macaque, envelopes from some but not all brain regions acquired changes in a conserved CD4-binding motif GGGDPE at amino acids 382 to 387. Furthermore, gp160s with the mutation G383E were able to mediate cell-to-cell fusion in a CD4-independent manner and were more susceptible to fusion inhibition by pooled plasma from infected macaques. Reversion of this mutation by site-directed mutagenesis resulted in reduction of CD4-independence and resistance to fusion inhibition in cell fusion assays. These studies demonstrate that SIV evolution within the brain results in a heterogeneous viral population with different phenotypes among different regions.

The present address of Julio Martín-García is Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA

This work was supported by PHS grants MH-067734 and NS-27405. The authors thank Pyone Aye (Tulane National Primate Research Center for) for the gift of reagents and Bridget Puffer, George Leslie, George Lin, Robert Doms, and James Hoxie (University of Pennsylvania) for helpful discussions.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.