423
Views
36
CrossRef citations to date
0
Altmetric
Original Articles

Reliability-based robust multi-objective crashworthiness optimisation of S-shaped box beams with parametric uncertainties

, , , &
Pages 443-456 | Received 27 Oct 2009, Accepted 10 Feb 2010, Published online: 01 Oct 2010
 

Abstract

In order to maximise the impact automotive energy-absorbing capacity considering uncertainties in the parameters of the design, it is desired to perform a robust optimum design process. Moreover, the optimum design of such absorption system is inherently a multi-objective optimisation problem. In this paper, a multi-objective optimisation approach is thus proposed to consider the robustness issue of those objective functions in the presence of parameter uncertainties. First, the axial impact crushing behaviour of the S-shaped box beams, as a highly simplified model of the front member of a vehicle body, is studied by the finite-element method using the software ABAQUS. Two polynomial meta-models based on the evolved group method of data handling (GMDH) neural networks are then obtained to simply represent both the absorbed energy (E) and the peak crushing force (F max) with respect to geometrical and material design variables using the training and testing data obtained from the finite-element study. Using such obtained polynomial neural network models and the Monte Carlo simulation, a multi-objective genetic algorithm is then used for the reliability-based robust Pareto design of the S-shaped box beams having probabilistic uncertainties in material and geometrical parameters. In this way, the statistical moments of mean and variances of the important crashworthiness criteria functions, namely the specific energy absorption (SEA) and the peak crushing force (F max), are considered as the conflicting objectives. It is shown that some useful optimal design principles involved in the performance of the S-shaped box beams can be discovered by the reliability-based robust Pareto optimisation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 433.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.