215
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Review of the Jordan Rollover System (JRS) vis-à-vis other dynamic crash test devices

, , &
Pages 553-569 | Received 12 Feb 2010, Accepted 10 Aug 2010, Published online: 15 Nov 2010
 

Abstract

A review of most of the existing rollover dynamic devices was conducted in view of assessing their flexibility, reliability, repeatability and crash reconstruction potential. The outcomes indicate the Jordan Rollover System (JRS) to offer the better potential with respect to a repeatable dynamic test procedure in all aspects than the Inverted Drop Test, the Dolly Test Procedure SAE J2114 or FMVSS 208, the Controlled Rollover Impact System, the Corkscrew Rollover System, and above all the newly updated FMVSS 216 Roof Crush Resistance Test. The positive attributes of the JRS are that the device as a research tool is flexible and accurate enough to accommodate most prescribed input conditions; it measures dynamic near and far side impact roof crush loads, not possible with other test devices; it has excellent repeatability en par with the National Highway Traffic Safety Administration and the Insurance Institute for Highway Safety dynamic frontal, side and rear impact tests; it is scientifically acceptable and indeed represents an improvement over other dynamic test devices used by the industry; it provides reliable roof crush and roof crush speed comparisons between vehicles; and it measures cumulative roof crush data believed by many experts in rollover to be a function of head–neck system injury severity. In addition, the JRS is a self-contained device that occupies a small footprint to perform controlled tests within industry-accepted laboratory crash test tolerances at a far more reasonable cost than other test devices. It is the best available dynamic test device in terms of assessing the interaction between roof deformation, occupant kinematics and restraint systems. Original equipment manufacturers and associated researchers can use the device to supplement the new FMVSS 216 in this regard. This is particularly so considering that the next phase of the FMVSS 216 is the development of a dynamic procedure. Moreover, the device can be readily used to star rate rollover crashworthiness of vehicles.

Acknowledgements

We thank the Santos Family Foundation of the USA for financing the review study; equally gratitude is addressed to the Centre For Injury Research for making the JRS device available to the review team and their time; and last but not least thanks to all the International Scientific Research and Evaluation Committee members including Dr K. Atesmen, Professor K. H. Digges, N. DiNapoli, Professor C.-D. S. Kan, Dr B. Muzzy, Professor C. Neil-Sturgess, Dr J. Paver and Dr N. Perrone for their contribution to the study.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 433.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.