602
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Finite element analysis of kinematic behaviour and injuries to pedestrians in vehicle collisions

, , , , , , & show all
Pages 141-152 | Received 30 Mar 2011, Accepted 12 Oct 2011, Published online: 14 Nov 2011
 

Abstract

In vehicle-to-pedestrian collisions, the characteristics of a vehicle's frontal shape and structural stiffness have a significant influence on the kinematics and injury risk of the pedestrian's body regions. In the present study, the kinematic behaviour and injury risk of the pedestrians were investigated in collisions against vehicles with different frontal shapes. The THUMS (Total HUman Model for Safety) pedestrian finite element (FE) model was used and impacted by three different types of vehicle FE models (passenger car, one-box vehicle and sport-utility vehicle [SUV]) representing the different frontal shapes at 40 km/h. In the simulation with the passenger car-to-pedestrian impact, the pedestrian wrapped around the hood, and the resulting bending moment of the lower extremity and head injury criterion (HIC) value were high. In the simulation with the one-box vehicle-to-pedestrian impact, the pedestrian's upper torso was directly hit by the front end of the vehicle. The pelvis and chest had contact with the stiff vehicle frontal panel, resulting in a high stress being observed on the rib cage. In the simulation with the SUV-to-pedestrian impact, the force of the pelvis was high due to the contact with the vehicle hood's leading edge. The results indicated that the frontal shape of the vehicle has a large effect on the pedestrian kinematic behaviour, including the impact velocity of the pelvis, chest, and head against the vehicle. Moreover, the stiffness of the vehicle structure can affect the deformation mode of the human body segments, such as the lower extremities and the rib cage. The injury predictions for each body region from the FE analyses agreed with observations from pedestrian accidents involving a car, one-box vehicle and SUV, respectively.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 433.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.