975
Views
70
CrossRef citations to date
0
Altmetric
Original Articles

Energy absorption of circular aluminium tubes with functionally graded thickness under axial impact loading

&
Pages 95-106 | Received 17 Jul 2014, Accepted 27 Oct 2014, Published online: 18 Nov 2014
 

Abstract

The main objective of this study is to investigate the effects of thickness-gradient patterns on energy absorption characteristics of aluminium-based circular tubes under axial impact loading. Functionally graded thickness (FGT) enables to obtain variable stiffness throughout the length of a structure; thus, it provides more efficient control of the crashworthiness parameters when compared with traditionally designed uniform thickness (UT) counterparts. In order to investigate the crash behaviour of FGT tubes, different thickness-gradient patterns are introduced to the axial direction of the tubes and then impact with a fixed rigid wall is simulated by using the nonlinear explicit finite element (FE) method. To show the efficiency of FGT tubes, crashworthiness performance of the FGT tubes are compared with their UT counterparts at the same weight. The effects of thickness range and aspect ratio of the tubes on their crash behaviours are also investigated. The simulation results show that the FGT tubes have superior crashworthiness performance than that of their UT counterparts and the crashworthiness parameters of the FGT tubes can be controlled and improved with the appropriate selection of geometric parameters of the tubes.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 433.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.