216
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Numerical and experimental study of multimode failure phenomena in GFRP laminates of different lay-ups

, &
Pages 87-99 | Received 05 Nov 2016, Accepted 27 Feb 2017, Published online: 07 Apr 2017
 

ABSTRACT

Induced delamination due to low velocity impact results in degradation of load-carrying capacity of composite structures especially when loading is predominantly in compression. In this paper, size, shape and orientation of delamination that occur due to low velocity impact is obtained by numerical modelling and results are validated through experiments. Initially, numerical model is validated for single-mode fracture tests like double cantilever beam and end-notch flexure. Multimode failure phenomenon like low velocity impact was also simulated for different lay-ups such as cross-ply, angle-ply and quasi-isotropic and validated through experiments. Low velocity impact testing of laminates was done using drop weight impactor, and experimentally obtained force–time and energy–time history were compared with numerical results. Good match is obtained between simulations and experiments. Delamination size was also compared and it is found that numerical model correctly predicts the size, shape and orientation of delamination for all lay-ups.

Acknowledgment

The author wish to acknowledge the support and contribution made by members of Composite Research Center, more specifically Irfan Khan for testing and Vinod Duraiswamy and his team in fabrication of RFI samples.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 433.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.