1,559
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Crush and crash analysis of an automotive battery-pack enclosure for lightweight design

, , , , &
Pages 500-509 | Received 02 Dec 2019, Accepted 13 Jun 2020, Published online: 12 Oct 2020
 

Abstract

The undesirable stresses and deformations during a high-speed crash can cause a short circuit or sudden fire in the battery packs, which represents a significant safety concern for vehicles. In this paper, computer-aided simulations are conducted to provide a supplemental and economic approach to evaluate the crashworthiness of a battery-pack enclosure. First, a nonlinear dynamic finite element model of a battery-pack enclosure is established and validated using the modal test. The crush and crash simulations, based on the governing equations and explicit FE code, LS-DYNA, are performed according to the test standard. Second, three high-strength steel materials are used in the validated finite-element model to perform a crashworthiness simulation with respect to robustness and lightweight design. The results show how both materials and thickness affect the crashworthiness of an automotive battery-pack enclosure. Finally, the weight of the battery-pack enclosure is reduced, while the crashworthiness is improved as well.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 433.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.