686
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Experimental and numerical crushing performance of crash boxes filled with re-entrant and anti-tetrachiral auxetic structures

ORCID Icon, ORCID Icon & ORCID Icon
Pages 649-663 | Received 24 Mar 2022, Accepted 16 Aug 2022, Published online: 03 Sep 2022
 

Abstract

Crash box structures are used for mitigating the transfer of impact sourced loads to the vehicle cabinet to prevent injuries and casualties. They are designed in the shape of tubes, and during loading, they can be depleted as sacrificial structures. For increasing energy absorption capability, particular types of fillers can be used in crash boxes. In the present study, the outcome of two particular filling structures on the energy absorption capability of crash boxes is investigated experimentally and numerically. As filling materials, PolyJet printed polymer re-entrant and anti-tetrachiral structures are utilized to investigate the effect of two main auxetic mechanisms of re-entrant and chiral. The crash boxes made of empty, re-entrant and anti-tetrachiral filled AA6063 square tubes are crushed experimentally under quasi-static conditions and numerical models are validated. Specific energy absorption (SEA) and crush force efficiency (CFE) are obtained for comparison to select the best configuration. The comparison of the SEA value of the anti-tetrachiral and re-entrant lattices filled tubes over the empty tube shows 28.5% and 20.6% improvements, respectively, while a similar trend in CFE with improvements of 50.6% and 40.27% for lattices are experienced, in the same sequence.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This study was carried out under Technological and Scientific Council of Turkey (TUBITAK) Technology and Innovation Support Program (Grant number: 5158001).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 433.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.