32
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

An improved formulation of coherent forward scatter from random rough surfaces

Pages 67-78 | Received 05 Mar 1997, Published online: 01 Apr 2009
 

Abstract

The operator expansion method is known to give accurate numerical results for scattering from individual surfaces that are too complicated for other methods. It is less widely appreciated that the method can be applied to random surfaces as well. The simplest application is the modelling of mean forward scatter from a homogeneous Gaussian ensemble of surfaces. To leading order in the admittance operator, the formula for the scalar Dirichlet boundary includes an exponential form in the roughness correlation function. The scalar Neumann boundary adds terms involving the gradients of the exponential form. These factors modestly alter the magnitude and advance the phase of the coherent scatter relative to the conventional one-point (Kirchhoff) approximation when the significant surface correlation scales are comparable to the radiation wavelength. Narrow troughs in the surface undulations ‘repel’ the radiation and effectively elevate and flatten the mean surface. These results are reliable over a wide range of surface amplitudes and correlation scales, provided the slope times Rayleigh height (Dirichlet problem) and slope (Neumann problem) are not large.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.