116
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Microstructure and cavitation behaviour of alloyed austempered ductile irons

ORCID Icon, , , &
Pages 279-287 | Received 30 Apr 2017, Accepted 23 Feb 2018, Published online: 08 Mar 2018
 

ABSTRACT

In this paper, the study of cavitation behaviour of austempered ductile iron (ADI) alloyed with copper, as well as copper and nickel with a fully ausferritic microstructure, is presented. The ADI materials used were austenitized at 900 °C and austempered at 350 °C having an ausferrite microstructure with 16 and 19% of austenite, respectively. The experimental investigations were conducted using the ultrasonically induced cavitation test method. The results show that the cavitation damage was initiated at graphite nodules, as well as in the interface between a graphite nodule and an ausferrite matrix. The cavitation rate revealed that the ADI material alloyed with Cu + Ni austempered at 350 °C/3 h has a higher cavitation resistance in water than ADI alloyed with Cu. An increased cavitation resistance of the ADI material alloyed with Cu and Ni is due to the matrix hardening by stress assisted phase transformation of austenite into the martensite (SATRAM) phenomenon.

Acknowledgements

The authors gratefully acknowledge research funding from The Ministry of Education, Science and Technological Development of The Republic of Serbia under grant number TR34015. The authors are also very grateful to Mr. Michael A. Maier for technical support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 261.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.