385
Views
32
CrossRef citations to date
0
Altmetric
Original Articles

Characteristic regimes of premixed gas combustion in high-porosity micro-fibrous porous media

, , , &
Pages 571-581 | Received 12 Mar 2010, Accepted 07 Jun 2010, Published online: 31 Aug 2010
 

Abstract

Dynamical behaviour of the premixed flame propagating in the inert high-porosity micro-fibrous porous media has been studied numerically. Effects of mixture filtration velocity, equivalence ratio and burner transverse size on the flame structure have been investigated and the regions of existence of different combustion regimes have been determined. It was found that the influence of the hydrodynamic instability on the flame dynamics is significant in the case of the moderate and high filtration velocities and this effect is negligible at the low velocities. At the moderate filtration velocities the effect of hydrodynamic instability manifests in the flame front deformation and in particular in the flame inclination. It was found that the flame can be stabilized within the whole interval of the filtration gas velocity, whereas in the ordinary porous media the standing wave is settled only at fixed value of gas filtration velocity. This finding is in line with recent experimental results on combustion in micro-fibrous porous media (Yang et al., Combust. Sci. Tech. 181 (2009), 1–16). Possible physical interpretation of the flame anchoring effect may be given on the base of present numerical analysis. At the high filtration velocities the hydrodynamic instability manifests itself in periodical appearance of the moving wrinkles on the flame front surface which forms non stationary high temperature trailing spots behind the leading part of the flame front. Such dynamics may be associated with splitting wave structures which were revealed in previous experiments (Yang et al., Combust. Sci. Tech. 181 (2009), 1–16).

Acknowledgements

This study was supported in part by Russian Foundation for Basic Research (Grant 09-08-00546-a), Integration grant SB RAS N 116 and IFS Tohoku University collaborative research programs.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 288.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.