746
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Numerical simulation of laminar co-flow methane–oxygen diffusion flames: effect of chemical kinetic mechanisms

&
Pages 23-46 | Received 21 Feb 2010, Published online: 18 Oct 2010
 

Abstract

Laminar co-flow methane–oxygen flames issuing into the unconfined atmosphere have been studied. A numerical model, which employs different chemical kinetics sub-models, including a skeletal mechanism with 43 reaction steps and 18 species and four global reaction mechanisms (two 2-steps and two 4-steps mechanisms), and an optically thin radiation sub-model, has been employed in the simulations. Numerical model has been validated against the experimental results available in literature. The numerical predictions from the global kinetic mechanisms have been compared with the 43-steps mechanism predictions. At all oxygen flow rates, the predictions of the distributions of temperature, mass fractions of CH4, O2 and CO2 by the 2-steps mechanisms are closer to 43-steps mechanism. The overall distribution of H2O predicted by 2-steps mechanisms is close to that of 43-steps except for the maximum value. Especially at higher oxygen flow rates, the modified 2-steps mechanism predicts these quantities much closer to those predicted by the 43-steps mechanism. Further, the 2-steps mechanisms predict location of the reaction zone accurately. However, they can just give an idea of overall CO distribution in terms of the axial and radial locations within which CO will almost be consumed, but not its maximum value in the domain. The 4-steps mechanisms predict the trend of variation of these quantities quite reasonably. However, they under-predict the location of the reaction zone. At higher oxygen flow rates, the predictions by 4-steps mechanisms becomes better, especially in the prediction of maximum CO and H2O. Over all, the modified 2-steps mechanism can be recommended for reasonable and economical predictions of oxy-rich methane flames.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 288.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.