531
Views
43
CrossRef citations to date
0
Altmetric
Original Articles

Detailed modeling of planar transcritical H2–O2–N2 flames

, &
Pages 141-182 | Received 07 Jul 2010, Accepted 16 Sep 2010, Published online: 26 Jan 2011
 

Abstract

We first investigate a detailed high pressure flame model. Our model is based on the thermodynamics of irreversible processes, statistical mechanics, statistical thermodynamics, and the kinetic theory of dense gases. We study thermodynamic properties, chemical production rates, transport fluxes, and establish that entropy production is non-negative. We next investigate the structure of planar transcritical H2–O2–N2 flames and perform a sensitivity analysis with respect to the model. Non-idealities in the equation of state and in the transport fluxes have a dramatic influence on the cold zone of the flame. Non-idealities in the chemical production rates – consistent with thermodynamics and important to insure positivity of entropy production – may also strongly influence flame structures at very high pressures. At sufficiently low temperatures, fresh mixtures of H2–O2–N2 flames are found to be thermodynamically unstable, in agreement with experimental results. We finally study the influence of various parameters associated with the initial reactants on the structure of transcritical planar H2–O2–N2 flames as well as lean and rich extinction limits.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 288.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.