270
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Implementation of REDIM reduced chemistry to model an axisymmetric laminar diffusion methane–air flame

, , &
Pages 299-323 | Received 28 Jun 2010, Accepted 02 Nov 2010, Published online: 07 Apr 2011
 

Abstract

The goal of this work is to analyze the use of automatically reduced chemistry by the Reaction–Diffusion Manifold (REDIM) method in simulating axisymmetric laminar coflow diffusion flames. Detailed chemical kinetic models are usually computationally prohibitive for simulating complex reacting flows, and therefore reduced models are required. Automatic reduction model approaches usually exploit the natural multi-scale structure of combustion systems. The novel REDIM approach applies the concept of invariant manifolds to treat also the influence of the transport processes on the reduced model, which overcomes a fundamental problem of model reduction in neglecting the coupling of molecular transport with thermochemical processes. We have considered a previously well studied atmospheric pressure nitrogen-diluted methane–air flame as a test case to validate the methodology presented here. First, one-dimensional and two-dimensional REDIMs were computed and tabulated in lookup tables. Then, the full set of governing equations are projected on the REDIM and implemented in the object-oriented C++ Gascoigne code with a new add-on library to deal with the REDIM tables. The projected set of governing equations have been discretized by the Finite Element Method (FEM) and solved by a GMRES iteration preconditioned by a geometric multigrid method. Local grid refinement, adaptive mesh and parallelization are applied to ensure efficiency and precision. The numerical results obtained using the REDIM approach have shown very good agreement with detailed numerical simulations and experimental data.

Acknowledgments

This work is a result of a joint project between the Interdisciplinary Center for Scientific Computing of the University of Heidelberg and the Graduate Program in Applied Mathematics of the Federal University of Rio Grande do Sul. Pedro Henrique de Almeida Konzen is grateful to Prof. Dr. Álvaro Luiz de Bortoli for making this project possible. This author is also grateful for financial support from the Deutscher Akademischer Austausch Dienst (DAAD).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 288.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.