145
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

On combustion in a closed rectangular channel with initial vorticity

, &
Pages 272-294 | Received 18 Jul 2013, Accepted 27 Jan 2014, Published online: 03 Apr 2014
 

Abstract

This article examines the detailed combustion process in a theoretical model with applicability to combustion in a wave rotor or wave disc engine. The model comprises a single channel into which an initial loading of methane and air is admitted and ignited after all inlet and exit ports have been closed. Combustion takes place at constant volume. However, the initial gaseous mixture in the channel is not at rest. The initial opening and closing of the ports generates significant vorticity which influences the evolution of the combustion process. Numerical evaluations are provided for the detailed flame shape for simplified (one-step) chemistry and a simulation using the detailed 235-step San Diego scheme. Quantities examined are the evolution of vorticity, pressure fluctuations, mass consumption rate, flame surface area and the influences on combustion of adiabatic and non-adiabatic channel walls. Combustion regimes are identified and compared with simpler model studies (no initial flow). Pointwise quantities are examined to describe the various stages of burning in the channel. The focus of the study is directed towards quantities that influence overall burning rate and completeness of combustion.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 288.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.