251
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Acoustic timescale characterisation of symmetric and asymmetric multidimensional hot spots

&
Pages 711-729 | Received 17 Jun 2014, Accepted 17 Sep 2014, Published online: 07 Nov 2014
 

Abstract

In this work, two-dimensional hot spots are modelled by combining a linear temperature gradient with a constant temperature plateau. This approach retains the simplicity of a linear temperature gradient, but captures the effects of a local temperature maximum of finite size. Symmetric and asymmetric plateau regions are modelled using both rectangular and elliptical geometries. A one-step Arrhenius reaction for H2–air is used to model the reactive mixture. Plateaus with different ratios of excitation to acoustic timescales, spanning two orders of magnitude, are simulated. Even with clear differences in behaviour between one and two dimensions, the a priori prescribed hot spot timescale ratio is shown to characterise the 2-D gasdynamic response. The relationship between one and two dimensions is explored using asymmetric plateau regions. It is shown that 1-D behaviour is recovered over a finite time. Furthermore, the duration of this 1-D behaviour is directly related to the asymmetry of the plateau.

Additional information

Funding

The research reported in this paper is partially supported by the HPC equipment purchased through: NSF MRI [grant number CNS 1229081]; NSF CRI [grant number 1205413].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 288.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.