270
Views
4
CrossRef citations to date
0
Altmetric
Articles

Effect of sub-grid wrinkling factor modelling on the large eddy simulation of turbulent stratified combustion

ORCID Icon, & ORCID Icon
Pages 911-939 | Received 18 Aug 2020, Accepted 21 Jul 2021, Published online: 06 Aug 2021
 

Abstract

Different flame efficiency function (wrinkling factor) models are compared and tested for the Cambridge stratified flame using Large Eddy Simulations (LES) with an artificially thickened flame approach. Different numerical discretisations and definitions of the outer cut-off length are tested, as different practices exist that can have a strong impact on the results. The Cambridge experiment is chosen since it exhibits a Reynolds number of more than 11,500 and the stratified flame is strongly wrinkled further downstream, making it a challenging configuration for the turbulent (stratified) combustion modelling. The sub-grid level physics have been modelled by four wrinkling factor closures, which rely explicitly on algebraic functions of resolved variables, to analyse the influence of wrinkling factor modelling on the predictions of LES. Many such models have been proposed and were tested successfully – but typically for perfectly premixed flames, using specific discretisations and definitions of the cut-off length or filter width. The present paper shows that the models tested perform well even for stratified combustion, provided that the correct definition for the cut-off length is used, and to a lesser extent, suitable discretisation methodologies are employed.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Correction Statement

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Additional information

Funding

The authors gratefully acknowledge the financial support by the Deutsche Forschungsgemeinschaft (DFG) (Proj. No.: 393710272, KE 1751/13-1) and the EPSRC (EP/R029369/1) and the compute time on magnitUDE, Duisburg (DFG INST 20876/209-1 FUGG) and on ARCHER, Edinburgh (e305 – UKCTRF).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 288.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.