251
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Numerical investigations on methods to control the rate of heat release of HCCI combustion using reduced mechanism of n-heptane with a multidimensional CFD code

, &
Pages 501-525 | Received 30 Jan 2006, Published online: 21 Jun 2007
 

Abstract

In this study a semi-reduced reaction scheme developed previously was used to derive a 26 step reduced mechanism, using the sensitivity approach and the steady state approximation (QSS) with Chemkin code. This 26 step model has been implemented in a CFD combustion code (Star-CD/Kinetics) to study combustion process in homogeneous charge compression ignition (HCCI) engines. The first results obtained have confirmed the very rapid combustion phase and fast heat release with completely homogeneous mixtures, for a wide range of operating conditions. This numerical approach has been used first to study the effects of natural thermal stratification when the mixture is initially homogeneous. In a second step, the different possible methods to control the heat release rate have been studied. The stratification with several homogeneous regions of different composition is shown to be very efficient; the limits of this process are discussed.

Acknowledgement

This research was funded by Renault Automobiles: the authors wish to thank this company.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 288.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.