120
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

A CFD assisted control system design with applications to NOx control in a FGR furnace

, &
Pages 469-481 | Received 28 Sep 2005, Accepted 28 Sep 2006, Published online: 24 Apr 2007
 

In this paper, a novel technique to design control systems for industrial processes with non-linear distributed parameters is proposed. The technique utilizes computational fluid dynamics (CFD) simulation to extract the most essential characteristics from the non-linear industrial process, and then represent them as a set of linear dynamic models around a specific operating point. Based on the linear dynamic representation, a closed-loop feedback linear control system can be designed to maintain the desired performance for the system around the chosen operating point. To illustrate such a design process, an industrial reheating furnace with flue gas recirculation (FGR) is selected herein. The method involves the numerical solution of the partial differential equations describing the fluid flow, heat transfer and combustion process in the furnace. The resulting dynamic relations between the furnace inputs and outputs can then be represented in terms of a multi-input and multi-output transfer function matrix. The objective of the control system is then to maintain the optimally selected furnace operating conditions and compensate for any deviations caused by disturbances to minimize the nitric oxides (NO x ) emission through feedback mechanisms. The performance of the closed-loop controlled furnace is evaluated not only in the linear domain, but also with the detailed full-scale non-linear CFD model. The results have shown that the proposed method is viable and the designed control system can indeed minimize the deviation of the furnace from the desired operating conditions and hence to prevent any excessive NO x formation in the combustion process.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 288.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.