891
Views
28
CrossRef citations to date
0
Altmetric
Articles

Scaling up: linking field data and remote sensing with a hierarchical model

, , &
Pages 509-521 | Received 29 Jun 2009, Accepted 07 Sep 2010, Published online: 23 May 2011
 

Abstract

Ecologists often seek to understand patterns and processes across multiple spatial and temporal scales ranging from centimeters to hundreds of meters and from seconds to years. Hierarchical statistical models offer a framework for sampling design and analysis that can be used to incorporate the information collected at finer scales while allowing comparison at coarser scales. In this study we use a Hierarchical Bayesian model to assess the relationship between measurements collected on the ground at centimeter scales nested within 2 × 3 m quadrats, which are in turn nested within much larger (0.1–12 ha) plots. We compare these measurements with the Normalized Difference Vegetation Index (NDVI) derived from radiometrically and geometrically corrected 30-m resolution LANDSAT ETM+ data to assess the NDVI–Biomass relationship in the Cape Floristic Region of South Africa. Our novel modeling approach allows the data observed at submeter scales to be incorporated directly into the model and thus all the data (and variability) collected at finer scales are represented in the estimates of biomass at the LANDSAT scale. The model reveals that there is a strong correlation between NDVI and biomass, which supports the use of NDVI in spatiotemporal analysis of vegetation dynamics in Mediterranean shrubland ecosystems. The methods developed here can be easily generalized to other ecosystems and ecophysiological parameters.

Acknowledgments

We thank the Western Cape Nature Conservation Board for permission to work in the protected areas of the Western Cape. This research was supported by NSF grants OISE-0623341 and DEB0516320 to JAS, by NASA headquarters under the NASA Earth and Space Science Fellowship Program grant NNX09AN82H to AMW, a NASA CT Space Grant to AMW, and a grant from the University of Connecticut Center for Environmental Science and Engineering to AMW. We also thank the anonymous reviewers for suggestions that helped improve the manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 704.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.