1,650
Views
43
CrossRef citations to date
0
Altmetric
Original Articles

A localized contour tree method for deriving geometric and topological properties of complex surface depressions based on high-resolution topographical data

, , , , &
Pages 2041-2060 | Received 03 Dec 2014, Accepted 11 Mar 2015, Published online: 05 May 2015
 

Abstract

Surface depressions are abundant in topographically complex landscapes, and they exert significant influences on hydrological, ecological, and biogeochemical processes at local and regional scales. The increasing availability of high-resolution topographical data makes it possible to resolve small surface depressions. By analogy with the reasoning process of a human interpreter to visually recognize surface depressions from a topographic map, we developed a localized contour tree method that is able to fully exploit high-resolution topographical data for detecting, delineating, and characterizing surface depressions across scales with a multitude of geometric and topological properties. In this research, we introduce a new concept ‘pour contour’ and a graph theory-based contour tree representation for the first time to tackle the surface depression detection and delineation problem. Beyond the depression detection and filling addressed in the previous raster-based methods, our localized contour tree method derives the location, perimeter, surface area, depth, spill elevation, storage volume, shape index, and other geometric properties for all individual surface depressions, as well as the nested topological structures for complex surface depressions. The combination of various geometric properties and nested topological descriptions provides comprehensive and essential information about surface depressions across scales for various environmental applications, such as fine-scale ecohydrological modeling, limnological analyses, and wetland studies. Our application example demonstrated that our localized contour tree method is functionally effective and computationally efficient.

Acknowledgment

The authors thank R.A. (Bob) MacMillan and two anonymous reviewers for their thoughtful comments.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 704.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.