1,155
Views
60
CrossRef citations to date
0
Altmetric
Original Articles

A partitioned and asynchronous cellular automata model for urban growth simulation

, &
Pages 637-659 | Received 29 Jun 2015, Accepted 15 Aug 2015, Published online: 25 Sep 2015
 

Abstract

Cellular automata (CA) models are used to analyze and simulate the global phenomenon of urban growth. However, these models are characterized by ignoring spatially heterogeneous transition rules and asynchronous evolving rates, which make it difficult to improve urban growth simulations. In this paper, a partitioned and asynchronous cellular automata (PACA) model was developed by implementing the spatial heterogeneity of both transition rules and evolving rates in urban growth simulations. After dividing the study area into several subregions by k-means and knn-cluster algorithms, a C5.0 decision tree algorithm was employed to identify the transition rules in each subregion. The evolving rates for cells in each regularly divided grid were calculated by the rate of changed cells. The proposed PACA model was implemented to simulate urban growth in Wuhan, a large city in central China. The results showed that PACA performed better than traditional CA models in both a cell-to-cell accuracy assessment and a shape dimension accuracy assessment. Figure of merit of PACA is 0.368 in this research, which is significantly higher than that of partitioned CA (0.327) and traditional CA (0.247). As for the shape dimension accuracy, PACA has a fractal dimension of 1.542, which is the closest to that of the actual land use (1.535). However, fractal dimension of traditional CA (1.548) is closer to that of the actual land use than that of partitioned CA (1.285). It indicates that partitioned transition rules play an important role in the cell-to-cell accuracy of CA models, whereas the combination of partitioned transition rules and asynchronous evolving rates results in improved cell-to-cell accuracy and shape dimension accuracy. Thus, implementing partitioned transition rules and asynchronous evolving rates yields better CA model performance in urban growth simulations due to its accordance with actual urban growth processes.

Additional information

Funding

This study was supported by the National Natural Science Foundation of China [grant number 41101098], [grant number 41371113]; the National Social Science Foundation of China [grant number 13CGL092]; and the Outstanding Youth Foundation Project for Humanities and Social Sciences in Huazhong Agricultural University.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 704.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.