374
Views
7
CrossRef citations to date
0
Altmetric
Articles

Uncertainty analysis of space–time prisms based on the moment-design method

, &
Pages 1336-1358 | Received 27 Jun 2015, Accepted 08 Dec 2015, Published online: 24 Jan 2016
 

ABSTRACT

Space–time prism (STP) is an important concept for the modeling of object movements in space and time. An STP can be conceptualized as the result of the potential path of a moving object revolving around in the three-dimensional space. Though the concept has found applications in time geography, research on the analysis and propagation of uncertainty in STPs, particularly under high degree of nonlinearity, is scanty. Based on the efficiency and effectiveness of the moment-design (M-D) method, this paper proposes an approach to deal with nonlinear error propagation problems in the potential path areas (PPAs) of STPs and their intersections. Propagation of errors to the PPA and its boundary, and to the intersection of two PPAs is investigated. Performance of the proposed method is evaluated via a series of experimental studies. In comparison with the Monte Carlo method and the implicit function method, simulation results show the advantages of the M-D method in the analysis of error propagation in STPs.

Additional information

Funding

This research was supported by the earmarked grant CUHK 446213 of the Hong Kong Research Grant Council, and the Geographical Modelling and Geocomputation Program under the Focused Innovation Scheme of The Chinese University of Hong Kong.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 704.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.