520
Views
18
CrossRef citations to date
0
Altmetric
Articles

A bat-inspired approach to define transition rules for a cellular automaton model used to simulate urban expansion

, , &
Pages 1961-1979 | Received 09 Oct 2015, Accepted 02 Feb 2016, Published online: 07 Apr 2016
 

ABSTRACT

A new metaheuristic approach is presented to discover transition rules for a cellular automaton (CA) model using a novel bat movement algorithm (BA). CA is capable of simulating the evolution of complex geographical phenomena, and transition rules lie at the core of these models. An intelligence algorithm based on the echolocation behavior of bats is used to discover explicit transition rules for use in simulating urban expansion. CA transition rules are formed by links between attribute constraint items and classification items. The transition rules are derived using the BA to optimize the lower and upper threshold values for each attribute. The BA-CA model is then constructed for the simulation of urban expansion observed for Nanjing City, China. The total accuracy of newly formulated BA-CA model for this application is 86.9%, and the kappa coefficient is 0.736, which strongly suggest that the interactions of bats are effective in capturing the relationships between spatial variables and urban dynamics. It is further demonstrated that this bat-inspired BA-CA model performs better than the null model, the particle swarm optimization-based CA model (PSO-CA), and the ant colony optimization-based CA model (ACO-CA) using the same dataset. The model validation and comparison illustrate the novel capability of BA for discovering transition rules of CA during the simulation of urban expansion and potentially for other geographic phenomena.

Acknowledgements

We thank the editor and two anonymous referees who read the paper and made helpful suggestions on ways to improve it.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This study was supported by the National Science Foundation of China [grant numbers 41101349 and 41301414], NSF of Jiangsu Province of China [grant number BK20130904], Jiangsu Government Scholarship for Overseas Studies, and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 704.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.