Publication Cover
Archives of Physiology and Biochemistry
The Journal of Metabolic Diseases
Volume 114, 2008 - Issue 5
98
Views
23
CrossRef citations to date
0
Altmetric
Original Article

Roles of insulin signalling and p38 MAPK in the activation by lithium of glucose transport in insulin-resistant rat skeletal muscle

, , &
Pages 331-339 | Received 18 Apr 2008, Accepted 07 Aug 2008, Published online: 05 Jan 2009
 

Abstract

We have demonstrated previously in insulin-sensitive skeletal muscle that lithium, an alkali metal and non-selective inhibitor of glycogen synthase kinase-3 (GSK-3), activates glucose transport by engaging the stress-activated p38 mitogen-activated protein kinase (p38 MAPK). However, it is presently unknown whether this same mechanism underlies lithium action on the glucose transport system in insulin-resistant skeletal muscle. We therefore assessed the effects of lithium on basal and insulin-stimulated glucose transport, glycogen synthesis, insulin signalling (insulin receptor (IR), Akt, and GSK-3), and p38 MAPK in soleus muscle from female obese Zucker rats. Lithium (10 mM LiCl) increased basal glucose transport by 49% (p < 0.05) and net glycogen synthesis by 2.4-fold (p < 0.05). In the absence of insulin, lithium did not induce IR tyrosine phosphorylation, but did enhance (p < 0.05) Akt ser473 phosphorylation (40%) and GSK-3ß ser9 phosphorylation (88%). Lithium potentiated (p < 0.05) the stimulatory effects of insulin on glucose transport (74%), glycogen synthesis (2.4-fold), Akt ser473 phosphorylation (39%), and GSK-3ß ser9 phosphorylation (36%), and elicited robust increases (p < 0.05) in p38 MAPK phosphorylation both in the absence (100%) or presence (88%) of insulin. The selective p38 MAPK inhibitor A304000 (10 μM) completely blocked basal activation of glucose transport by lithium, and significantly reduced (42%, p < 0.05) the lithium-induced enhancement of insulin-stimulated glucose transport in insulin-resistant muscle. These results indicate that lithium enhances both basal and insulin-stimulated glucose transport and glycogen synthesis in insulin-resistant skeletal muscle of female obese Zucker rats, and that these lithium-dependent effects are associated with enhanced Akt and GSK-3ß serine phosphorylation. As in insulin-sensitive muscle, the lithium-induced activation of glucose transport in insulin-resistant skeletal muscle is dependent on the engagement of p38 MAPK.

Acknowledgements

The study was supported by NIH grant DK063967 (to E.J.H.).

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 505.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.