Publication Cover
Mathematical and Computer Modelling of Dynamical Systems
Methods, Tools and Applications in Engineering and Related Sciences
Volume 30, 2024 - Issue 1
265
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Fubini polynomial-based generalization of Szász-Baskakov operators

&
Pages 591-604 | Received 19 Mar 2024, Accepted 30 May 2024, Published online: 10 Jun 2024

ABSTRACT

This work contains a generalization of the Szász-Baskakov operators with the help of Fubini polynomials. Firstly, we get the rate of convergence of our new operators and then we find some approximation results. Finally, Voronovskaya-type theorem and error table with comparisons are given.

1. Introduction

Since the 1800s, approximation theory has been a significant part of mathematics. With approximation theory, the optimal method for estimating functions by utilizing smaller functions and computing the resulting errors may be quantitatively described. In addition, Appell, Bernoulli, Euler, Genocchi, Fubini, and Hermite polynomials are the most well-known polynomial families and are used in numerical analysis, asymptotic approximation, and special function theory. In recent years, special polynomials have attracted much attention and shed light on many fields, such as engineering and applied sciences. We can even construct new operators with the help of these polynomial families. The Szász operators are formed by extending the most well-known Bernstein operators to an infinite range. The definition of Szász operators in Szász (Citation1950) is as follows,

(1.1) Sn(f;x)=enxv=0(nx)vv!fvn.(1.1)

Here, x0, nNandfC[0,). Baskakov (Citation1957) introduced Baskakov operators in 1957 as follows:

(1.2) Bn(f;x)=1(1+x)nv=0v1+nvxv(1+x)vfvn,(1.2)
nN+,x[0,).

Szász-Mirakyan-Baskakov operators were examined in Prasad et al. (Citation1983), which were later corrected and improved by Gupta (Citation1993).

(1.3) Kn(f;x)=(n1)v=0enx(nx)vv!0v1+nvτv(τ+1)n+vf(τ).(1.3)

We refer to Govil et al. (Citation2013), Acu and Gupta (Citation2017), Gupta (Citation2018), Mursaleen et al. (Citation2019), Ansari et al. (Citation2019, Citation2023), Nasiruzzaman et al. (Citation2022, Citation2023), Usta et al. (Citation2022), Sofyalıoğlu et al. (Citation2022), Kanat and Erdal (Citation2024) and Rahman and Ansari (Citation2024) for some recent work on approximation by linear positive operators. The Appell polynomials pv(x) generating functions are provided by

(1.4) A(k)ekx=v=0pv(x)kv.(1.4)

where A(k)=v=0avkv (a00) is an analytic function in the disc|k|<R(R>1) with A(1)0. Additionally, some special polynomials Bv Bernoulli polynomials, Ev Euler polynomials and Gv Genocchi polynomials were defined by Cheon (Citation2003) and Horadam (Citation1991) as follows,

v=0Bv(x)kvv!=kexkek1(|k|<2π),
v=0Ev(x)kvv!=2exkek+1(|k|<π)

and

v=0Gv(x)kvv!=2kexkek+1(|k|<π),

respectively. Our upcoming destination is a recent study by Kilar and Simsek (Citation2017), which gives the details of a family of special numbers and polynomials that are connected to Fubini numbers and polynomials. The following generating function defines the Fubini-type polynomials avα(x) of order α,

(1.5) F(α)(x,k)=2α(2ek)2αexk=v=0av(α)(x)kvv!(αN;|k|<log2),(1.5)

it produces the following generating function for x=0, for the Fubini-type numbers avα of order α given by avα=avα(0),

F(α)(0,k)=2α(2ek)2α=v=0av(α)kvv!(αN;|k|<log2).

In the light of this information, we define the Fubini-type Szász-Baskakov operators of order 1 as follows,

(1.6) Yn(f;x)=(2e)2(n1)2enxv=0av(nx)v!0v1+nvτv(1+τ)n+vf(τ),(1.6)

where nN, x0, and fC[0,).

2. Approximation properties of Yn operators

Lemma 2.1.

The subsequent formulas are valid:

v=0vav(x)v!=2xex(2e)2+4ex+1(2e)3,
v=0v2av(x)v!=2x(x+1)ex(2e)2+8(x+1)ex+1(2e)3+12ex+2(2e)4,
v=0v3av(x)v!=2x(x2+3x+1)ex(2e)2+(12x2+36x+20)ex+1(2e)3+36(x+2)ex+2(2e)4+48ex+3(2e)5,
v=0v4av(x)v!=2x(x3+6x2+7x+1)ex(2e)2+(16x3+96x2+144x+60)ex+1(2e)3
+(72x2+360x+384)ex+2(2e)4+(192x+576)ex+3(2e)5+240ex+4(2e)6.

Proof.

We get the expected results if we substitute k=1 and α=1 after considering the derivatives of EquationEquation (1.5) with respect to k.□

Lemma 2.2.

Considering each x[0,) and em=τm for (m=0,1,2,3,4), we write

Yn(e0,x)=1,
Yn(e1,x)=nn2x+2+e(n2)(2e),(n>2),
Yn(e2,x)=n2(n2)(n3)x2+4n2(n2)(n3)(2e)x
+6e2(n2)(n3)(2e)2+10e(n2)(n3)(2e)+2(n2)(n3),(n>3),
Yn(e3,x)=n3(n4)(n3)(n2)x3
+3n2(2e(n4)(n3)(n2)(2e)+3(n4)(n3)(n2))x2
+n(18e2(n4)(n3)(n2)(2e)2+42e(n2)(2e)(n3)(n4)
+18(n4)(n3)(n2))x+24e3(n4)(n3)(n2)(2e)3

+72e2(n4)(n3)(n2)(2e)2+56e(n4)(n3)(n2)(2e)
+6(n4)(n3)(n2),(n>4),
Yn(e4,x)=n4(n5)(n4)(n3)(n2)x4
+n38e(n5)(n4)(n3)(n2)(2e)+12(n5)(n4)(n3)(n2)x3
+n2(36e2(n5)(n4)(n3)(n2)(2e)2
+58e(n5)(n4)(n3)(n2)(2e)+47(n5)(n4)(n3)(n2))x2
+n(96e3(n5)(n4)(n3)(n2)(2e)3+270e2(n5)(n4)(n3)(n2)(2e)2
+302e(n5)(n4)(n3)(n2)(2e)+91(n5)(n4)(n3)(n2))x
+120e4(n5)(n4)(n3)(n2)(2e)4+528e3(n5)(n4)(n3)(n2)(2e)3
+636e2(n5)(n4)(n3)(n2)(2e)2+370e(n5)(n4)(n3)(n2)(2e)
+24(n5)(n4)(n3)(n2),(n>5).

Proof.

The Beta-Gamma function is given as

(2.1) B(v,n)=0τv1(1+τ)n+v=Γ(v)Γ(n)Γ(v+n)=(v1)!(n1)!(v+n1)!.(2.1)

By taking f(τ)=1=e0 in the operator (1.6) and by using (2.1), we get

Yn(e0;x)=(2e)2(n1)2enxv=0av(nx)v!0v+n1vτv(τ+1)n+v
=(2e)2(n1)2enxv=0av(nx)v!v+n1vB(v+1,n1)
=(2e)22enxv=0av(nx)v!
=1.
f(τ)=τ=e1
Yn(e1;x)=(2e)2(n1)2enxv=0av(nx)v!v+n1vB(v+2,n2)
=(2e)2(n1)2enx(v=0vav(nx)v!+v=0av(nx)v!)
=nn2x+e+2(n2)(e2),(n>2).

One can find Yn(e2;x), Yn(e3;x), Yn(e4;x), respectively, in a similar way.□

Lemma 2.3

Considering each x[0,), we have

Yn(τx;x)=(nn21)x+e+2(n2)(e2),(n>2)
Yn((τx)2;x)=n2(n3)(n2)1)x2+(4n(e+2)(n2)(n3)(2e)82e(n3)(n2)x
2e212e8(n3)(n2)(2e)2,(n>3),
Yn((τx)4;x)=(n4(n5)(n4)(n3)(n2)4n3(n2)(n3)(n4)
+6n2(n3)(n2)4n(n2)+1)x4
+(24n34en3(n5)(n4)(n3)(n2)(2e)72n212en2(n4)(n3)(n2)(2e)
+48n(n3)(n2)(2e)8+4e(n2)(2e))x3
+(94n2+11en2(n5)(n4)(n3)(n2)(2e)

+36e2n2(n5)(n4)(n3)(n2)(2e)2144n+96en(n4)(n3)(n2)(2e)
72e2n(n4)(n3)(n2)(2e)2+28e2+12e+8(n2)(n3)(2e)2)x2
+(182n+211en(n5)(n4)(n3)(n2)(2e)
+540e2n174e3n(n5)(n4)(n3)(n2)(2e)3
576e2192e3(n2)(n3)(n4)(2e)3220e+48(n2)(n3)(n4)(2e))x
+1056e3408e4(n5)(n4)(n3)(n2)(2e)4
+290e2+644e+96(n5)(n4)(n3)(n2)(2e)2,(n>5).

Proof.

By taking advantage of the operator’s linearity to determine the central moments, we can express it as,

Yn(τx;x)=Yn(e1;x)xYn(e0;x),(n>2),
Yn((τx)2;x)=Yn(e2;x)2xYn(e1;x)+x2Yn(e0;x),(n>3),
Yn((τx)4;x)=Yn(e4;x)4xYn(e3;x)+6x2Yn(e2;x)4x3Yn(e1;x)+x4Yn(e0;x),(n>5),

we obtain the desired outcome.

Remark 2.1 The outcome of the limit of central moments is as follows:

limnnYn(τx;x)=2x2+e2e,
(2.2) limnnYn((τx)2;x)=x(x+2),(2.2)
limnn2Yn((τx)4;x)=3x2(x+2)2.

Theorem 2.1

Let f be continuous on [0,) and a member of the class

E={f:f(x)1+x2isconvergentasx}.

Then, Yn(f;x) operators converge uniformly on each compact subset of [0,) as

limnYn(f;x)=f(x).

Proof.

From Lemma 2.2, we get

limnY(τi;x)=xi,i=0,1,2.

These convergences are consistently satisfied on the compact subset of the interval [0,). Therefore, the classical Korovkin theorem (Francesco and Campiti Citation2011) provides the proof.

Definition 2.1.

Let f CD[0,) and δ>0. Modulus of continuity of the function f, denoted by ω(f,δ) is

(2.3) ω(f,δ)=supx,τ[0,)|xτ|δ|f(x)f(τ)|,(2.3)

where CD[0,) represents the space of uniformly continuous functions on [0,) (Altomare and Campiti, Citation1994).

Definition 2.2.

Given a function fC[a,b], its second modulus of continuity is given by (Devore and Lorentz, Citation1993).

(2.4) ω2(f,δ)=sup0<τδf(.+2τ)2f(.+τ)+f(.),(2.4)

where f∥=maxτ[a,b]|f(τ)|.

Lemma 2.4.

(Gavrea and Rasa, Citation1993) Given a sequence of positive and linear operators with the condition Kn(1;x)=1, let fC2[0,a] and (Kn)n0 be represented. Subsequently

(2.5) |Kn(f;x)f(x)|≤∥f Kn((τx)2;x)+12f  Kn((τx)2;x).(2.5)

Definition 2.3.

(Zhuk Citation1989) The function fϕ is called Steklov function if the following holds:

(2.6) fϕ(τ)=1ϕτϕ2τ+ϕ2f(u)du=1ϕϕ2ϕ2f(τ+v)dv,(2.6)

where f is integrable function on an implicit and bounded interval [a,b]. Derivative of this function at almost every point is given as:

(2.7) f ϕ(τ)=1ϕfτ+ϕ2fτϕ2.(2.7)

The following relationships exist if the derivative f is uniformly continuous on the real axis.

supτ(,)|f(τ)fϕ(τ)|ωϕ2,f,
supτ(,)|f ϕ(τ)|12ω(ϕ,f).

Lemma 2.5.

(Zhuk Citation1989) Let fC[a,b] and ϕ0,(ba)2. Let fϕ be the second-order Steklov function associated with the function f. Then, the inequalities listed below are met:

i.

fϕf∥≤34ω2(f,ϕ),
ii.
fϕ ∥≤32ϕ2ω2(f,ϕ).

Generally, we will use the first and second modulus of continuity to limit the margin of error in linear positive operators. We shall determine the rate of convergence in the two theorems that follow with the use of the earlier definitions and theorems.

Theorem 2.2.

Let fCD[0,)E.Yn operators confirm the inequality that follows:

(2.8) |Yn(f;x)f(x)|2ω(f,δn(x)).(2.8)

Here,

δ:=δn(x)=n2(n2)(n3)+1)x2+(4n(e+2)(n2)(n3)(2e)82e(n3)(n2)x
2e212e8(n2)(n3)(2e)2,(n>3).

Proof.

Let fC[0,). Next, using the modulus of continuity property,

(2.9) |f(x)f(τ)|(|τx|δ+1)ω(f,δ)(2.9)

is provided. Using the inequality stated above, we get

|Yn(f;x)f(x)||(2e)2(n1)2enxv=0av(nx)v!0v1+nvτv(1+τ)n+vf(τ)
(2e)2(n1)2enxv=0av(nx)v!0v1+nvτv(1+τ)n+vf(x)|
(2e)2(n1)2enxv=0av(nx)v!
×0v1+nvτv(1+τ)n+v|f(τ)f(x)|
(2e)2(n1)2enxv=0av(nx)v!
×0v1+nvτv(1+τ)n+v(|τx|δ+1)ω(f,δ)
1+1δ(2e)2(n1)2enxv=0av(nx)v!×0v1+nvτv(1+τ)n+v|τx|ω(f,δ).

The integral can be calculated using the Cauchy-Schwarz inequality to get the following result:

|Yn(f;x)f(x)|1+(2e)2(n1)2enx1δv=0av(nx)v!
×0n+v1vτv(1+τ)n+v12
×0n+v1vτv(1+τ)n+v|τx|212ω(f,δ).

By examining the Cauchy-Schwarz inequality in summation, one can easily reach the following conclusion

|Yn(f;x)f(x)|1+1δ(2e)2(n1)2enxv=0av(nx)v!
×0n+v1vτv(1+τ)n+v12
×(2e)2(n1)2enxv=0av(nx)v!
×0n+v1vτv(1+τ)n+v|τx|212ω(f,δ)
=1+1δ(Yn(e0;x))12(Yn((τx)2;x))12ω(f,δ)
=1+1δ(Yn((τx)2;x))12ω(f,δ)

the desired result is achieved.

(2.10) |Yn(f;x)f(x)|1+1δYn((τx)2;x)12ω(f,δ).(2.10)

By choosing δ:=δn(x)=Yn((τx)2;x), we have the desired result.

Theorem 2.3.

The following estimate applies to fC[0,a],

(2.11) |Yn(f;x)f(x)|2afϕ2+34(a+2+ϕ2)ω2(f,ϕ),(2.11)

where

(2.12) ϕ:=ϕn(x)=Yn((τx)2;x)4.(2.12)

Proof.

The second-order Steklov function associated with function f is denoted by fϕ. With regard to the individual Yn(1;x)=1, we achieve

|Yn(f;x)f(x)||Yn(f;x)f(x)+Yn(fϕ;x)Yn(fϕ;x)+fϕ(x)fϕ(x)|
|Yn(f;x)Yn(fϕ;x)|+|Yn(fϕ;x)fϕ(x)|+|fϕ(x)f(x)|
≤∥ffϕYn(1;x)+|Yn(fϕ;x)fϕ(x)|+fϕf(x)
2fϕf+|Yn(fϕ;x)fϕ(x)|.

With the help of Lemma 2.3 and Lemma 2.4,

|Yn(f;x)f(x)|Yn((τx)2;x)f ϕ+12fϕ Yn((τx)2;x).

The Landau inequality is defined from Fink (Citation1982) as follows,

f ∥≤2f12f  12.

When Lemma 2.5 and Landau inequality are combined,

fϕ∥≤2afϕ+a2fϕ 
(2.13) 2af+3a41ϕ2ω2(f,ϕ).(2.13)

If we specifically assume ϕ=Yn((τx)2;x)4, then we write

(2.14) |Yn(fϕ;x)fϕ(x)|2afϕ2+3a4ω2(f;ϕ)+34ϕ2ω2(f,ϕ).(2.14)

From Lemma 2.4,

|Yn(f;x)f(x)|2afϕ2+34(a+2+ϕ2)ω2(f,ϕ)

is obtained and the proof is completed.

3. Voronovskaya-type theorem

Theorem 3.1.

For f,f ,f  C[0,)E and x[0,), we receive

limnn(Yn(f;x)f(x))=2x2+e2ef (x)+12x(x+2)f  (x)

uniformly in each [0,) compact subset of.

Proof.

When we apply the function f‘s classical Taylor expansion, we get

(3.1) f(τ)=f(x)+f (x)(τx)+f  (x)(τx)22+(τx)2r(τ,x).(3.1)

Here, the phrase ‘reminder’ r(τ,x)C[0,)E and limτxk(τ,x)=0. By putting the Yn operators on Equation (3.1) two sides, we get

Yn(f;x)=f(x)+Yn((τx);x)f (x)+f  (x)2Yn((τx)2;x)+Yn((τx)2r(τ,x);x).

Then

limnn(Yn(f;x)f(x))=f (x)limnnYn((τx);x)+f  (x)2limnnYn((τx)2;x)
+limnnYn(r(τ,x)(τx)2;x).

Utilizing the Cauchy-Schwarz inequality limnnYn((τx)2r(τ,x);x) provides

nYn((τx)2r2(τ,x);x)Yn(r2(τ,x);x)n2Yn((τx)4;x).

Considering that r(τ,x)0 as τx,

(3.2) limnYn(r2(τ,x);x)=r2(x,x)=0.(3.2)

is equably confirmed in every case [0,) compact subset of. That way, we get the desired outcome from (2.2) and (3.2).

Example 3.1.

By choosing f(x)=log(ex+1)1000, 0x1 we show the error estimation of the Fubini-type Szász-Baskakov operators Yn using modulus of continuity in .

Table 1. Error approximation for Yn by using the modulus of continuity.

Example 3.2.

For f(x)=log(ex2+1)1000, 0x2, we show the comparison of the error estimates of the Fubini-type Szász-Baskakov operators (Yn) with the Szász-Baskakov Appell A2 operators (Mn) by Kanat et al. (Citation2024) by using the modulus of continuity in . Here we specially choose A(ω)=e8ω and B(ω)=0 in Kanat et al. (Citation2024).

Table 2. Error approximation for Yn and Mn by using the modulus of continuity.

As one can see in , the Fubini-type Szász-Baskakov operator has less error than the Szász-Baskakov Appell A2 under the current choices.

4. Conclusion

The Fubini-type Szász-Baskakov operators are created in this study. The central moments of the newly created Yn operator were examined. The modulus of continuity is investigated. Then, the Voronovskaya-type theorem for Fubini-type Szász-Baskakov operators is established. Lastly, numerical examples are presented to show and compare the error estimations.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

  • Acu AM, Gupta V. 2017. Direct results for certain summation-integral type Baskakov–Szász operators. Results Math. 72(3):1161–1180. doi: 10.1007/s00025-016-0603-2.
  • Altomare F, Campiti M. 1994. Korovkin-type approximation theory and its applications. De Gruyter Ser Stud in Math. 17:266–274.
  • Ansari KJ, Civelek M, Usta F. 2023. Jain’s operator: a new construction and applications in approximation theory. Math Meth App Sci. 46(13):14164–14176. doi: 10.1002/mma.9311.
  • Ansari KJ, Mursaleen M, Rahman S. 2019. Approximation by Jakimovski–Leviatan operators of durrmeyer type involving multiple appell polynomials. RACSAM. 113(2):1007–1024. doi: 10.1007/s13398-018-0525-9.
  • Baskakov VA. 1957. An instance of a sequence of linear positive operators in the space of continuous functions. Dokl Akad Nauk SSSR. 113(2):249–251.
  • Cheon G-S. 2003. A note on the Bernoulli and Euler polynomials. Appl Math Lett. 16(3):365–368. doi: 10.1016/S0893-9659(03)80058-7.
  • Devore RA, Lorentz GG. 1993. Constructive approximation. Berlın: Springer.
  • Fink AM. 1982. Kolmogorov-Landau inequalities for monotone functions. J Math Anal Appl. 90(1):251–258. doi: 10.1016/0022-247X(82)90057-9.
  • Francesco A, Campiti M. 2011. Korovkin-type approximation theory and its applications. Berlın; New York: De Gruyter.
  • Gavrea I, Rasa I. 1993. Remarks on some quantitative Korovkin-type results. Revue d’Analyse Numérique et de Théorie de l’Approximation. 22(2):173–176.
  • Govil NK, Gupta V, Soybas D. 2013. Certain new classes of durrmeyer type operators. Appl Math Comput. 225:195–203. doi: 10.1016/j.amc.2013.09.030.
  • Gupta V. 1993. A note on modified Szász operators. Bull Inst Math Academia Sinica. 21(3):275–278.
  • Gupta V. 2018. (p,q)-Szász–Mirakyan–Baskakov operators. Complex Anal Oper Theory. 12(1):17–25. doi: 10.1007/s11785-015-0521-4.
  • Horadam, AF. 1991. Genocchi polynomials. Applications of Fibonacci Numbers: Volume 4 Proceedings of ‘The Fourth International Conference on Fibonacci Numbers and Their Applications’. Dordrecht: Springer Netherlands.
  • Kanat K, Erdal S. 2024. Szász–Durrmeyer Operators Involving Confluent Appell Polynomials. Axioms. 13(3):135 doi: 10.3390/axioms13030135.
  • Kanat K, Sofyalıoğlu M, Karadaş V. 2024. A generalization of Szász-Baskakov operators by using the Appell polynomials of class A(2). Gazi Uni J Sci. 1–1. doi: 10.35378/gujs.1391889.
  • Kilar N, Simsek Y. 2017. A new family of fubini type numbers and polynomials associated with Apostol-Bernoulli numbers and polynomials. J Korean Math Soc. 54(5):1605–1621.
  • Mursaleen M, AL-Abeid AAH, Ansari KJ. 2019. Approximation by Jakimovski-Leviatan-Pǎltǎnea operators involving Sheffer polynomials. RACSAM. 113(2):1251–1265. doi: 10.1007/s13398-018-0546-4.
  • Nasiruzzaman M, Ansari KJ, Mursaleen M. 2022. On the parametric approximation results of Phillips operators involving the q-appell polynomials. Iran J Sci Technol Trans Sci. 46(1):251–263. doi: 10.1007/s40995-021-01219-9.
  • Nasiruzzaman M, Ansari K, Mursaleen M. 2023. Weighted and voronovskaja type approximation by q-Szász-Kantorovich operators involving appell polynomials. Filomat. 37(1):67–84. doi: 10.2298/FIL2301067N.
  • Prasad G, Agrawal PN, Kasana HS. 1983. Approximation of functions on [0,∞) by a new sequence of modified Szász operators. Math Forum. 6(2):1–11.
  • Rahman S, Ansari KJ. 2024. Estimation using a summation integral operator of exponential type with a weight derived from the α-Baskakov basis function. Math Methods Appl Sci. 47(4):2535–2547. doi: 10.1002/mma.9763.
  • Sofyalıoğlu M, Kanat K, Çekim B. 2022. Parametric generalization of the Meyer-König-Zeller operators. Chaos, Solitons & Fractals. 152:111417. doi: 10.1016/j.chaos.2021.111417.
  • Szász O. 1950. Generalization of Bernstein’s polynomials to the infinite interval. J Res Nat Bur Standards. 45(3):239–245. doi: 10.6028/jres.045.024.
  • Usta F, Akyiğit M, Say F, Ansari KJ. 2022. Bernstein operator method for approximate solution of singularly perturbed Volterra integral equations. J Math Anal Appl. 507(2):125828. doi: 10.1016/j.jmaa.2021.125828.
  • Zhuk V. 1989. Functions of the lip 1 class and SN bernstein’s polynomials. Vestnik Leningrad Univ Mat Mekh Astronom. 1:25–30.