331
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

CRACK FORMATION IN VACUUM CONCRETE

&
Pages 117-120 | Received 12 Nov 2001, Accepted 05 Feb 2002, Published online: 30 Jul 2012
 

Abstract

The reasons of crack formation in vacuum concrete floors with reinforcing mineral wear-resistant coating were investigated. The main reasons of crack formation are connected with low concrete strength due to the lack of water for cement hydration, the absence of shrinkage seams in floor structure, wrong reinforcement and excess thickness of strengthening mineral coating of concrete floor which initiates the crack formation.

At the concrete thickness 150 mm, the depth of crack spreading was 115 mm, the concrete strength in kerns—14.2–24.8 MPa instead of 30 MPa as planned, and the concrete macrostructure had the signs of lamination. Besides, an air clearance up to 4 mm in size was found between the foundation and concrete floor.

The reinforcement skeleton structure in concrete floors did not envisage the possibility of horizontal displacement of concrete coating in the square limited by deformation seams, and the deformation seams did not penetrate into the depth planned eliminating their formation during concrete hardening.

X-ray phase analysis of fresh hardening coating of concrete surface showed the presence of ettringite in it, and non- hydrated Portland cement minerals prevailed in the structure of concrete solution resulting in insufficient strength of the concrete hardened.

Thus, due to the considerable heterogeneity of vacuum concrete structure and properties by thickness, the presence of the initiator of crack formation in the concrete upper layer (ettringite) and wrong reinforcing the formation of uneven shrinkage phenomena in hardening cement takes place resulting in crack net formation in the upper stretched concrete area.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.