330
Views
16
CrossRef citations to date
0
Altmetric
Review Article

Role of tenascin-C in articular cartilage

, &
Pages 215-220 | Received 30 Mar 2017, Accepted 14 Jun 2017, Published online: 19 Jul 2017
 

Abstract

Tenascin-C (TN-C) is a glycoprotein component of the extracellular matrix (ECM). TN-C consists of four distinct domains, including the tenascin assembly domain, epidermal growth factor-like repeats, fibronectin type III-like repeats, and the fibrinogen-like globe (FBG) domain. This review summarizes the role of TN-C in articular cartilage. Expression of TN-C is associated with the development of articular cartilage but markedly decreases during maturation of chondrocytes and disappears almost completely in adult articular cartilage. Increased expression of TN-C has been found at diseased cartilage and synovial sites in osteoarthritis (OA) and rheumatoid arthritis (RA). TN-C is increased in the synovial fluid in patients with OA and RA. In addition, serum TN-C is elevated in RA patients. TN-C could be a useful biochemical marker for joint disease. The addition of TN-C results in different effects among TN-C domains. TN-C fragments might be endogenous inducers of cartilage matrix degradation; however, full-length TN-C could promote cartilage repair and prevent cartilage degeneration. The deficiency of TN-C enhanced cartilage degeneration in the spontaneous OA in aged joints and surgical OA model. The clinical significance of TN-C effects on cartilage is not straightforward.

Acknowledgements

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Conflict of interest

TY has received a royalty from IBL. MH and AS declare that they have no conflict of interest.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.