208
Views
23
CrossRef citations to date
0
Altmetric
Articles

Modelling and multi-objective optimisation of squeeze casting process using regression analysis and genetic algorithm

, &
Pages 182-198 | Received 23 Jun 2014, Accepted 15 Sep 2014, Published online: 18 Nov 2015
 

Abstract

In the present work, an attempt has been made using statistical tools to develop a non-linear regression model and to identify the significant contribution of squeeze cast process parameters on surface roughness, hardness and tensile strength. Microstructure examination performed on the squeeze cast samples has revealed that a maximum of 100 MPa pressure is good enough to eliminate all possible casting defects. Accuracy of the developed models has been tested with the help of ten test cases. It is important to note that the developed models predict responses with a reasonably good accuracy and the developed mathematical input–output relationship helps the foundry-man to make better predictions. The present work comprises four objectives, which are conflicting in nature. Hence, mathematical formulation is used to convert four objective functions into a single objective function. The popular evolutionary algorithm, that is genetic algorithm has been utilised to determine the optimal process parameters.

Acknowledgement

The authors would like to sincerely thank the Department of Applied Mechanics and Hydraulics, National Institute of Technology Karnataka, Surathkal, for providing research facilities.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 199.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.