95
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Assessing historical versus contemporary mercury and lead contamination in Lake Huron sediments

&
Pages 101-109 | Published online: 21 Feb 2009
 

Abstract

This research utilized surficial sediment core sample data that were collected in 1969/1973 and 2002 from Lake Huron as part of the Environment Canada Great Lakes Sediment Assessment Program. Concentrations for mercury and lead were analyzed due their persistence in the lake ecosystem and their detrimental environmental effects. The analysis area included the main basin of Lake Huron, Georgian Bay, and the North Channel. Comprehending overall pollution levels strictly on the basis of point data is a difficult task, however spatial analysis techniques combined with Geographic Information Systems can be used to gain a better understanding of lake-wide trends. The Geostatistical Analyst extension of the ESRI ArcGIS software was used to carry out ordinary kriging analyses on the datasets. They produced statistically valid concentration estimates with log-normal data transformation procedures occasionally being performed to obtain suitable prediction estimates. Geospatial analysis (including kriging) allows for samples that vary in number and location to be analyzed and compared with each other based on areal estimates. Overall decreases in contamination levels were observed between the historical and contemporary surveys. Mercury has seen a dramatic reduction in concentrations from 1969/1973 to 2002, while the lead results indicate that high levels of contamination (compared to background concentrations) still persist in the contemporary dataset, although they have subsided from historic values. Higher contaminant concentrations were generally found in depositional basins. The interpolated kriging surfaces are more informative than i.e. conventional dot and/or proportional circle maps in the amount of information they present. They also provide an increased understanding of both the spatial distribution and temporal trends in sediment contamination in Lake Huron.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.