53
Views
1
CrossRef citations to date
0
Altmetric
Original

MSC–DC interactions: MSC inhibit maturation and migration of BM-derived DC

, , , , , , , , & show all
Pages 451-458 | Published online: 07 Jul 2009
 

Abstract

Background

Mesenchymal stromal cells (MSC) comprise one of the BM stromal cells that are known to support hematopoiesis. It has also been suggested recently that MSC display immunosuppressive capacities through inhibiting the differentiation of monocyte-derived DC. DC travel to the lymph nodes (LN) to present Ag to T cells, and CCL21 is the chemokine that plays an important role in DC migration into the T-cell area of LN. We addressed the effect of MSC on this chemotactic activity of DC, one of the typical characteristics upon maturation.

Methods

BM cells were isolated and then cultured for generation of myeloid DC in the presence of GM-CSF and/or lipopolysaccharide with or without MSC. MSC were identified by flow cytometry of the immunologic markers and by performing colony-forming unit fibroblast assay. Migration of DC was observed with a newly developed time-lapse video microscopic technique.

Results

MSC co-culture inhibited the initial differentiation of DC, as well as their maturation. The matured DC actively migrated directionally in response to CCL21, a powerful DC-attracting chemokine, whereas the MSC co-cultured DC did not.

Discussion

Collectively, the findings of these experiments raise the possibility that MSC suppress the migratory function of DC and so they may serve immunoregulatory activities through the modulation of the Ag-presenting function of DC.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.