683
Views
37
CrossRef citations to date
0
Altmetric
Original Articles

IlliTC – low-temperature cracking model for asphalt pavements

, , , &
Pages 57-78 | Published online: 23 Sep 2013
 

Abstract

Low-temperature cracking (LTC) is a major distress and cause of failure for asphalt pavements located in regions with cold climate; however, most pavement design methods do not directly address LTC. The thermal cracking model (TCModel) utilised by American Association of State Highway and Transportation Officials Mechanistic-Empirical Pavement Design Guide relies heavily on phenomenological Paris law for crack propagation. The TCModel predictions are primarily based on tensile strength of asphalt mixture and do not account for quasi-brittle behaviour of asphalt concrete. Furthermore, TCModel utilises a simplified one-dimensional viscoelastic solution for the determination of thermally induced stresses. This article describes a newly developed comprehensive software system for LTC prediction in asphalt pavements. The software system called ‘IlliTC’ utilises a user-friendly graphical interface with a stand-alone finite-element-based simulation programme. The system includes a preanalyser and data input generator module that develops a two-dimensional finite element (FE) pavement model for the user and which identifies critical events for thermal cracking using an efficient viscoelastic pavement stress simulation algorithm. Cooling events that are identified as critical are rigorously simulated using a viscoelastic FE analysis engine coupled with a fracture-energy-based cohesive zone fracture model. This article presents a comprehensive summary of the components of the IlliTC system. Model verifications, field calibration and preliminary validation results are also presented.

Acknowledgements

The authors are grateful for the support provided by the sponsors and partners of Federal Highway Administration Pooled Fund Study TPF-5(132). Any opinions expressed herein are those of the writers and do not necessarily reflect the views of the sponsors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 204.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.