496
Views
17
CrossRef citations to date
0
Altmetric
Scientific papers

Evaluation of the development of aggregate packing in porous asphalt mixture using discrete element method simulation

&
Pages 64-85 | Received 28 Sep 2015, Accepted 01 Jan 2016, Published online: 01 Feb 2016
 

Abstract

Packing in coarse aggregates is the main factor for porous asphalt mixture's (PAM) resistance to external loading and deformation. Eight PAM gradations were designed, and aggregate backbone generated in the aggregate blend with particles larger than 2.36 mm was assessed through voids content in the aggregates under dry-rodded condition (VADRC) for four types of unbound aggregate blend (i.e. Blend-1∼Blend-4). Corresponding models, namely Model-1∼Model-4, were generated for each gradation design using discrete element method (DEM). Through the effect of sequentially adding increasingly finer particle components on the voids content, aggregates larger than 2.36 mm were classified into three categories: main coarse, interceptor, and quasi-fine. The particle-to-particle contact can well explain the development of packing structure in an assembly of particles via the DEM simulation parameter, mean coordination number in coarser fraction (MCNcr), and MCNcr of an intermediate value indicated adequate interaction developed by the coarser and finer fractions in a blend. Especially for Model-4, an attained MCNcr value at 4.0 or higher indicated that aggregates coarser than 4.75 mm were capable of maintaining a stable framework as finer aggregates were being added, accompanied by Voids in the Coarse aggregate ratio being less than 1.0. On the whole, the DEM simulation is effective in evaluating the packing structure and is found to be useful in guiding gradation design for PAM.

Acknowledgements

The authors would like to thank Shell Bitumen Singapore for their kind supply of bitumen (PG 76). The authors also thank students in B.Eng. degree in characterising some of the material properties. We are grateful to Nanyang Technological University for providing financial support of this work.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 204.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.