429
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Effect of cooling medium on low-temperature properties of asphalt binder

, , &
Pages 234-255 | Received 15 Aug 2016, Accepted 25 Oct 2016, Published online: 23 Oct 2017
 

Abstract

The characterisation of asphalt binder at low temperature is of fundamental importance for selecting and designing asphalt materials with good and durable performance in regions experiencing severely cold climates. The current specification addresses this issue based on the Performance Grading (PG) system, developed during the Strategic Highway Research Program, and on low-temperature creep tests performed on asphalt binder with the Bending Beam Rheometer (BBR). Recently, an alternative experimental method was proposed to relate the complex modulus, obtained with the Dynamic Shear Rheometer (DSR) at low temperature, to the BBR creep stiffness. However, while DSR tests are performed in air, BBR relies on an ethanol bath for conditioning the binder specimens, making the relation between complex modulus and creep stiffness dependent on the specific cooling medium. In this paper, the effect of cooling medium on the low PG and on the rheological properties obtained from DSR and BBR tests is experimentally investigated and modelled. First, DSR and BBR tests, in ethanol and air, are performed on a set of different asphalt binders. Then, a relationship between the complex modulus in the time domain and the creep stiffness obtained both in ethanol and air is derived and the low PG for both cooling media is estimated. Finally, 2 Springs 2 Parabolic Elements 1 Dashpot and the Huet models are used to compare the effect of ethanol and air on the rheological properties of the asphalt binders. It is found that air results into higher creep stiffness and smaller m-values compared to ethanol. The two rheological models indicate that, only in the case of air, complex modulus and creep stiffness present the same kernel model parameters. This suggests that the low performance grade, obtained from BBR tests in ethanol, is strongly affected by the cooling medium, as well as the recently proposed procedure based on DSR tests. Based on the finding of the present research, the use of air for BBR creep tests is recommended.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The support provided by the Institut für Straßenwesen and its laboratory team at Technische Universität Braunschweig, Germany, is gratefully acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 204.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.