218
Views
8
CrossRef citations to date
0
Altmetric
Scientific notes

Nonlinear genetic-base models for prediction of fatigue life of modified asphalt mixtures by precipitated calcium carbonate

, & ORCID Icon
Pages 850-866 | Received 13 Jun 2017, Accepted 26 Jul 2018, Published online: 30 Aug 2018
 

Abstract

Fatigue cracking is the most important structural failure in flexible pavements. The results of a laboratory study evaluating the fatigue properties of mixtures containing precipitated calcium carbonate (PCC) using indirect tensile fatigue (ITF) test were investigated in this paper. The hot mix asphalt (HMA) samples were made with four PCC contents (0%, 5%, 10%, and 15%), and tested at three different testing temperatures (2°C, 10°C and 20°C) and stress levels (100, 300, and 500 kPa). Due to the complex behaviour of asphalt pavement materials under various loading conditions, pavement structure, and environmental conditions, accurately predicting the fatigue life of asphalt pavement is difficult. In this study, genetic programming (GP) is utilised to predict the fatigue life of HMA. Based on the results of the ITF test, PCC improved the fatigue behaviour of studied mixes at different temperatures. But, the considerable negative effect of the increase of the temperature on the fatigue life of HMA is evident. On the other hand, the results indicate The GP-based formulas are simple, straightforward, and particularly valuable for providing an analysis tool accessible to practicing engineers.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 204.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.