561
Views
31
CrossRef citations to date
0
Altmetric
Scientific Papers

Mechanical and compaction properties of graphite nanoplatelet-modified asphalt binders and mixtures

, &
Pages 1799-1814 | Received 23 Jul 2018, Accepted 03 Jan 2019, Published online: 22 Jan 2019
 

Abstract

This paper presents an experimental investigation of the properties of asphalt binders and mixtures modified with graphite nanoplatelets (GNPs). The focus is on studying the effects of GNP addition on low-temperature rheological and fracture properties of asphalt binders and mixtures and on compaction effort of asphalt mixtures. This is the first time that these effects are investigated and significant findings are reported. The study considers three types of GNP materials, including graphite nanoplatelets and sub-microscale graphite flakes. The cost of these materials is reasonably low, which makes them suitable for large-scale applications, unlike other types of graphite and graphene materials. The experimental results indicate that the addition of GNPs leads to considerable improvements of low-temperature strength and fracture properties of asphalt binders and mixtures. While the properties of asphalt binders at intermediate temperatures are minimally affected, for some combinations of binders and GNPs the increase in low-temperature strength is over 100%. A similar effect is observed for some of the asphalt mixtures investigated, in which the low-temperature fracture energy almost doubles. The laboratory compaction experiments show that the number of gyrations required for achieving a target density can be reduced by as much as 20–40% by adding a small percentage of GNPs into asphalt binders. The results of this experimental study indicate that GNP-modified asphalt binders and mixtures have significant potential for increasing the durability of asphalt pavements in cold regions, by reducing the compaction effort and improving the low-temperature strength and fracture properties of asphalt materials.

Acknowledgements

The results and opinions presented do not necessarily reflect those of the sponsoring agency. The authors also acknowledge the Minnesota Department of Transportation for providing the materials used in this study.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The support provided by National Cooperative Highway Research Program [grant number NCHRP-IDEA 173] is greatly acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 204.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.