152
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Response of a spatially developing turbulent boundary layer to a spanwise oscillating electromagnetic force

&
Article: N39 | Published online: 04 Oct 2011
 

Direct numerical simulations were performed to investigate the physics of a spatially developing turbulent boundary layer flow subjected to a spanwise oscillating electromagnetic force. The electromagnetic force was applied beneath a finite length of the flat plate. A fully implicit fractional step method was employed to simulate the flow. The mean and turbulent flow properties were obtained to analyze the spatial evolution of the near-wall vortical structure. It was found that the skin friction drag is significantly reduced for an oscillation period of T + = 100. Imposition of electromagnetic forcing leads to a decrease in turbulence production, which in turn causes a reduction in the turbulent kinetic energy. Instantaneous flow visualization techniques were used to observe the responses of the streamwise vortices and streak structures. The visualization results show that imposition of the spanwise oscillation suppresses and weakens the streak structures. Downstream of the region where the electromagnetic force is applied the flow eventually relaxes back to a two-dimensional equilibrium boundary layer.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 146.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.