117
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Influence of the approach boundary layer on the flow over an axisymmetric hill at a moderate Reynolds number

, &
Article: N8 | Received 27 Aug 2009, Accepted 14 Feb 2010, Published online: 15 Mar 2010
 

Abstract

Large-eddy simulations of a flow at a moderate Reynolds number over and around a three-dimensional hill have been performed. The main aim of the simulations was to study the effects of various inflow conditions (boundary layer thickness and laminar versus turbulent boundary layers) on the flow behind the hill. The main features of the flow behind the hill are similar in all simulations; however, various differences are observed. The topology of the streamlines (friction lines) on the surface adjacent to the lower wall was found to be independent of the inflow conditions prescribed and comprised four saddle points and four nodes (of which two are foci). In all simulations a variety of vortical structures could be observed, ranging from a horseshoe vortex – that was formed at the foot of the hill – to a train of large hairpin vortices in the wake of the hill. In the simulation with a thick incoming laminar boundary layer also, secondary vortical structures (i.e. hairpin vortices) were observed to be formed at either side of the hill, superposed on the legs of the horseshoe vortex. Sufficiently far downstream of the hill, at the symmetry plane the mean velocity and the rms of the velocity fluctuations were found to become quasi-independent of the inflow conditions, while towards the sides the influence of the hill decreases and the velocity profiles recover the values prevailing at the inflow.

Acknowledgements

The authors are grateful to the steering committee of the supercomputing facilities in Stuttgart for granting computing time on the NEC SX-8. MGV acknowledges the financial support of the German Research Foundation (DFG).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 146.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.