249
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Large eddy simulation of rotating turbulent channel flow with a new dynamic global-coefficient nonlinear subgrid stress model

, , &
Article: N48 | Received 31 May 2012, Accepted 28 Aug 2012, Published online: 15 Oct 2012
 

Abstract

In this paper, a new dynamic global-coefficient nonlinear subgrid scale (SGS) model is proposed for large eddy simulation (LES) of rotating turbulent channel flow. The basic model is a nonlinear model with a tensorial polynomial relation between the SGS stress and the resolved strain rate tensor. A new dynamic procedure is proposed to determine the model coefficients of the nonlinear model. The new dynamic method is derived from the globally averaged transport equation of the Reynolds shear stress, on which the rotation has strong and direct effects. The new dynamic nonlinear SGS model is examined in rotating turbulent channel at Re=umh/ν=7000, Ro=2Ωh/um =0.3 and 0.6, where Reynolds number Re and Rotation number Ro are defined by bulk mean velocity um , half channel width h, kinematic viscosity ν and angular velocity of spanwise rotation Ω. The statistical results obtained from the new model agree well with those from direct numerical simulation (DNS). The new model also successfully predicts the major structures in rotating turbulent channel flow, such as Taylor–Görtler vortices and streaks.

Acknowledgments

Acknowledgement

The work is supported by Natural Science Foundation of China (NSFC Grant 11132005, 10925210) and Tsinghua National Laboratory for Information Science and Technology.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 146.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.