475
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Third-order statistics and the dynamics of strongly anisotropic turbulent flows

, , &
Pages 121-160 | Received 18 Sep 2012, Accepted 20 Feb 2013, Published online: 14 Jun 2013
 

Abstract

Anisotropy is induced by body forces and/or mean large-scale gradients in turbulent flows. For flows without energy production, the dynamics of second-order velocity or second-order vorticity statistics are essentially governed by triple correlations, which are at the origin of the anisotropy that penetrates towards the inertial range, deeply altering the cascade and the eventual dissipation process, with a series of consequences on the evolution of homogeneous turbulence statistics: in the case of rotating turbulence, the anisotropic spectral transfer slaves the multiscale anisotropic energy distribution; nonlinear dynamics are responsible for the linear growth in terms of Ωt of axial integral length-scales; third-order structure functions, derived from velocity triple correlations, exhibit a significant departure from the 4/5 Kolmogorov law. We describe all these implications in detail, starting from the dynamical equations of velocity statistics in Fourier space, which yield third-order correlations at three points (triads) and allow the explicit removal of pressure fluctuations. We first extend the formalism to anisotropic rotating turbulence with ‘production’, in the presence of mean velocity gradients in the rotating frame. Second, we compare the spectral approach at three points to the two-point approach directly performed in physical space, in which we consider the transport of the scalar second-order structure function ⟨(δq)2⟩. This calls into play componental third-order correlations ⟨(δq)2δu⟩(r) in axisymmetric turbulence. This permits to discuss inhomogeneous anisotropic effects from spatial decay, shear, or production, as in the central region of a rotating round jet. We show that the above-mentioned important statistical quantities can be estimated from experimental planar particle image velocimetry, and that explicit passage relations systematically exist between one- and two-point statistics in physical and spectral space for second-order tensors, but also sometimes for third-order tensors that are involved in the dynamics.

Acknowledgements

This work is supported by the French National Research Agency (ANR) under contract number 08-BLAN-0076 ‘ANISO’.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 146.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.