116
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

A mixed-time-scale low-Reynolds-number one-equation turbulence model

, &
Pages 55-87 | Received 24 Oct 2012, Accepted 27 Apr 2013, Published online: 02 Aug 2013
 

Abstract

In this paper, a new low-Reynolds-number (LRN) one-equation turbulence model for eddy viscosity is proposed. A mixed time scale, representing a combination of three time scales: two time scales made of strain-rate parameter S and vorticity parameter Ω and the turbulent time scale k/ϵ, is introduced into this model. The proposed model is derived from an LRN k−ϵ two-equation model where the mixed time scale has been proved to be very effective for predicting local flows over complex terrains. In the transport equation of the model, the mixed time scale is included in the production and the dissipation terms. The new model is evaluated in channel flows at various Reynolds numbers, boundary layer flows with or without pressure gradient and backward-facing step flows with different expansion ratios and Reynolds numbers. Then the grid convergence of the model is investigated. Finally, the model performance for different values of the weighting constant Cs in the mixed time scale is assessed. The results show that the proposed model reproduces the correct wall-limiting behaviour of turbulent quantities and performs well in the near-wall region of turbulent flows. The model could be expected to be adopted in hybrid Reynolds averaged Navier–Stokes/large eddy simulation methodology for complex wall-bounded flows at high Reynolds numbers.

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Grant No. 51190102).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 146.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.