475
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Statistics and structures of pressure and density in compressible isotropic turbulence

, , , , &
Pages 21-37 | Received 01 Apr 2013, Accepted 31 Jul 2013, Published online: 26 Sep 2013
 

Abstract

We study statistics and structures of pressure and density in the presence of large-scale shock waves in a forced compressible isotropic turbulence using high-resolution numerical simulation. The spectra for pressure and density exhibit a −2 scaling over an operational definition of the inertial range. Both the numerical simulation and a heuristic PDF model reveal that the PDFs of pressure increment exhibit a −2 power law region for the separation in the operational definition of inertial range, quantitatively similar to the PDF of pressure gradient, which also displays a −2 power law region. Moreover, the statistical relation between density increment and pressure increment has been investigated through a shock-relation model. There is a positive correlation between the vorticity magnitude and pressure, which is different from the case of incompressible turbulence. We argue that this difference is due to large-scale shock waves, another type of intermittent structures in addition to vortex structures in incompressible turbulence.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 146.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.