440
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

A multi-scale simulation method for high Reynolds number wall-bounded turbulent flows

&
Pages 1-38 | Received 07 Aug 2013, Accepted 22 Sep 2013, Published online: 13 Nov 2013
 

Abstract

We present an assessment and enhancement of the hybrid two-level large-eddy simulation method (A.G. Gungor and S. Menon, A new two-scale model for large eddy simulation of wall-bounded flows, Prog. Aerosp. Sci. 46 (2010), pp. 28–45), a multi-scale formulation for simulation of high Reynolds number wall-bounded turbulent flows. The assessment of the method is performed by examining role of static and dynamic blending functions used to perform hybridisation of two-level simulation (K. Kemenov and S. Menon, Explicit small-scale velocity simulation for high-Re turbulent flows, J. Comput. Phys. 220 (2006), pp. 290–311; K. Kemenov and S. Menon, Explicit small-scale velocity simulation for high-Re turbulent flows. Part 2: Non-homogeneous flows, J. Comput. Phys. 222 (2007), pp. 673–701) and large-eddy simulation methods. The sensitivity of first- and second-order turbulence statistics to the type of blending functions is investigated by simulating a fully developed turbulent flow in a channel at a friction Reynolds number Reτ = 395 and comparing the results with those obtained using a direct numerical simulation. The first-order statistics do not show any significant differences for different blending functions, but the second-order statistics show some minor differences. The dynamic evaluation of the hybrid region and the blending function is necessary for non-equilibrium and complex flows where use of a static blending function can lead to inaccurate results. We propose two criteria for the dynamic evaluation; first evaluates extent of the hybrid region based on the subgrid turbulent kinetic energy and the second estimates the blending function based on a characteristic length scale. The computational efficiency of the method is enhanced by incorporating a hybrid programming paradigm where a standard domain decomposition by the message-passing-interface library is combined with the open multi-processing based parallelisation. A further enhancement of the method is achieved by incorporating a closure model for the unclosed hybrid terms in the governing equations, which appear due to hybridisation of two-level- and large-eddy-simulation methods. The model is based on an order of magnitude approximation and a preliminary assessment of the model shows improvement of turbulence statistics when used to simulate turbulent flow in a periodic channel. The assessment and improvements to the multi-scale method make it more suitable for simulation of practical wall-bounded turbulent flows at higher Reynolds number than a conventional large-eddy simulation. This is demonstrated by simulating two representative cases; turbulent flow at high Reynolds number in a periodic channel and flow over a bump placed on the lower surface of a channel, where a relatively coarser computational grid is found to be sufficient for reasonably accurate results.

Acknowledgements

This work was supported by the Office of Naval Research (Ron Joslin, Program Manager). The computation time provided by the DOD HPC centre at ERDC is appreciated.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 146.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.