740
Views
66
CrossRef citations to date
0
Altmetric
Original Articles

Preferential concentration of heavy particles in turbulence

, , , &
Pages 293-310 | Received 15 Nov 2013, Accepted 18 Feb 2014, Published online: 07 Apr 2014
 

Abstract

Particle-laden flows are of relevant interest in many industrial and natural systems. When the carrier flow is turbulent, a striking feature is the phenomenon called preferential concentration: particles denser than the fluid have the tendency to inhomogeneously distribute in space, forming clusters and depleted regions. We present an investigation of clustering of small water droplets in homogeneous and isotropic active-grid-generated turbulence. We investigate the effect of Reynolds number (Rλ) and Stokes number (St) on particles clustering in the range Rλ ∼ 200−400 and St ∼ 2−10. Using Voronoï diagrams, we characterise clustering level and cluster properties (geometry, typical dimension and fractality). The exact same Voronoï analysis is then applied to investigate clustering properties of specific topological points of the velocity field of homogeneous isotropic turbulence obtained from direct numerical simulations at Rλ ∼ 220 and 300. The goal is to compare clustering properties of actual particles with those of such points in order to explore the relevance of possible clustering mechanisms, including centrifugal effects (heavy particles sampling preferentially low-vorticity regions) and sweep-stick mechanisms (heavy particles preferentially sticking to low-acceleration points). Our study points towards a leading role of zero-acceleration points and sweep-stick effects, at least for the experimental conditions considered in this study.

Additional information

Funding

This work was supported by the French Agence Nationale pour la Recherche (project ANR-12-BS09-011-03), the COST action on ‘Particles in turbulence’ (project MP0806) and the French-Argentinian ECOS-Sud program (project A08U02).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 146.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.