353
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of the turbulent boundary layer in the vicinity of a self-excited cylindrical Helmholtz resonator

, , &
Pages 705-728 | Received 03 Sep 2014, Accepted 25 Feb 2015, Published online: 08 Apr 2015
 

Abstract

This study investigates the changes in the structure of a turbulent boundary layer downstream of a flow-excited Helmholtz resonator. To this end, a fully developed turbulent boundary layer over a resonator mounted flush with a flat plate was simulated by implementing a large eddy simulation (LES). To assist in understanding the effect of the resonator on the flow structure, a sensitivity study was undertaken by changing the main geometrical parameters of the resonator. The results demonstrated that when the boundary layer thickness equals the orifice length, the cross-stream component of velocity fluctuations penetrates the boundary layer, resulting in a reduction of the turbulence intensity by up to 12%. Therefore, it is concluded that a Helmholtz resonator has the potential to reduce the instabilities within the boundary layer. These investigations also assist in identifying the optimal parameters to delay turbulence events within the grazing flow using Helmholtz resonators.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 146.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.